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A ~ t r a c t - - A  method for estimating the rise velocity of  large bubbles in non-circular vertical ducts 
is proposed. It is suggested here that the bubble rise velocity is controlled by the effective average 
radius of  curvature at the bubble cap. This curvature is estimated on the basis of  the suggested 
bubble shape, which is related to the duct geometry. 

The rise velocity of large bubbles in unbounded media and in channels has received 
considerable attention both experimentally and theoretically. In the analysis of Davis & 
Taylor (1950) the rise velocity of free spherical capped bubbles in stagnant liquid was 
considered. The surface tension and viscous forces were neglected and the bubble motion 
was assumed to be determined by the free fall of the liquid along the upper surface of the 
bubble. They found that the rise velocity, lib, of an unbounded bubble was directly 
proportional to the square root of the local radius of curvature at the top of the bubble: 

vb = c , £ ~ 6 ,  [1] 

where D is the curvature diameter (twice the radius of curvature), g is the acceleration due 
to gravity and C = 0.47. 

Davis & Taylor (1950) showed that [1] is applicable also for restricted bubble flow in 
round pipes, in which case D in [1] is the pipe diameter, and C = 0.35. 

Only a few studies dealing with the bubble rise velocity in non-circular channels have 
appeared. Geometries, such as rectangular ducts, annuli as well as rod bundles are of 
interest in industries concerning with nuclear plants, heat exchangers and gas-oil risers. 

An intuitive approach for calculating the bubble rise velocity in geometries other than 
a round pipe would be to use [1] with the same constant C = 0.35, but with a proper 
equivalent diameter De. The choice of a hydraulic diameter as the equivalent diameter has 
been proven to be totally wrong, giving in many cases substantially lower values than those 
observed experimentally. Griffith (1964) suggested using the large dimension of the channel 
as the characteristic diameter in [1]. His suggestion was partially successful, but still the 
experimental value of C appeared to depend considerably on the channel geometry. 

Recently, Sadatomi et al. (1982) injected solitary air bubbles into stagnant water 
columns of different geometries and measured the bubble rise velocity. They suggested 
using an equi-periphery diameter, which is equivalent to the wetted periphery divided by 
re. Using this characteristic dimension, they correlated their data as well as that of Griffith 
(1964), applying [1] as suggested by Davis & Taylor (1950). The constant C was found to 
be in the range of 0.31-0.39. Although this selection of D~ seems to be successful, no 
physical explanation was given for the choice of the equi-periphery diameter as the 
characteristic dimension. 

In order to base any possible explanation on physical grounds we recall that in the 
original derivation of Davis & Taylor (1950) the bubble rise velocity depends on the radius 
of curvature of the bubble's cap at the top. Thus, it is assumed here that the rise velocity 
of bubbles in non-circular ducts is also determined by the cap curvature. This effective 
curvature is taken as the average of the two major radii of curvature which in turn are 
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Figure 1. Bubble shape in an annulus. 

estimated as the largest and shortest dimensions of the horizontal cross-section of the 
bubble. For rectangular ducts with sides a and b the effective diameter in [1] is thus 
D e = (a + b)/2. 

Consider now a large gas bubble rising in an annulus with an outer diameter D and inner 
diameter d. It was observed that the rise velocity in this case exceeds that of bubbles rising 
in a circular pipe with the same outer diameter. This result seems to be unexpected and 
puzzling. Furthermore, if a symmetrical ring bubble is assumed to exist in an annulus 
(figure la), the curvature diameter at the cap is of the order of (D - d)/2. Using this 
dimension as the characteristic diameter in [1] results in a bubble rise velocity which is 
considerably lower than that observed experimentally. Close observations show that, due 
to instability, the bubbles in annuli are not symmetrical (Griffith 1964), but rather have 
the form of an open annular ring, as shown in figure lb. This open annular ring can be 
regarded as a wrapped rectangular bubble with two main characteristic curvature 
diameters: the long one is of the order of rc(D + d)/2, while the short one is of the order 
of (D - d ) / 2 .  The resulting average diameter of curvature is given by 

De = 2L -2 + 2 = (~ + 1) + ~ (Tr - 1) . [2] 

One can expect thus that for annuli with a narrow gap (d ~ D), where the effective 
diameter according to [2] is De = ~/2 D > D; the rising velocity will be determined by the 
outer diameter and will be higher than in the circular pipe of the same diameter. 

In more complex geometries (e.g. rod bundles) explicit information regarding the 
resulting bubble shape seems to be needed in order to predict the rising velocity. 

Using the above-suggested characteristic dimension, the validity of [1] was checked for 
available data for the rise velocity of single bubbles in rectangular channels and annuli. 
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Figure 2. Experimental results for C using the proposed effective diameter. Dimension ratio: d/D 
for annulus and a/b for rectangulars. Closed symbols, Sadatomi et al. (1982); open symbols, 

Griffith (1964); Fq, m, rectangular channel; O,  O,  annulus. 
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The resulting constant C is shown in figure 2. Grittith's (1964) data correlates with C in 
a very narrow range of 0.344).36. The data of Sadatomi et al. (1982) for annuli correlates 
very well with the value of C = 0.34. Their data for rectangular channels result in 
somewhat higher but still reasonable values of C. 

It should be emphasized that the main purpose of the present note is not only to come 
up with a better suggestion for the characteristic dimension but rather to give some 
physical justification for the choice of the proper equivalent diameter, and especially to 
explain the surprising phenomena that bubbles in annuli rise faster than those in a tube 
with the same shroud diameter. The present approach provides a reasonable method to 
estimate the bubble rise velocity, provided experimental information on the actual bubble 
shape is available. This shape is determined by the duct geometry as well as by prevailing 
flow conditions. 
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